MicroRNAs contribute to compensatory β cell expansion during pregnancy and obesity.
نویسندگان
چکیده
Pregnancy and obesity are frequently associated with diminished insulin sensitivity, which is normally compensated for by an expansion of the functional β cell mass that prevents chronic hyperglycemia and development of diabetes mellitus. The molecular basis underlying compensatory β cell mass expansion is largely unknown. We found in rodents that β cell mass expansion during pregnancy and obesity is associated with changes in the expression of several islet microRNAs, including miR-338-3p. In isolated pancreatic islets, we recapitulated the decreased miR-338-3p level observed in gestation and obesity by activating the G protein-coupled estrogen receptor GPR30 and the glucagon-like peptide 1 (GLP1) receptor. Blockade of miR-338-3p in β cells using specific anti-miR molecules mimicked gene expression changes occurring during β cell mass expansion and resulted in increased proliferation and improved survival both in vitro and in vivo. These findings point to a major role for miR-338-3p in compensatory β cell mass expansion occurring under different insulin resistance states.
منابع مشابه
Compensatory β-cell mass expansion
Pancreatic β-cells, located within the islets of Langerhans, are key players in the control of blood glucose homeostasis. The amount of insulin secreted by these cells is precisely adjusted to avoid hypoor hyperglycaemic episodes and prevent the appearance of diabetes mellitus. Pregnancy and obesity are associated with diminished insulin sensitivity of target tissues and a consequent rise in in...
متن کاملAn increase in immature β-cells lacking Glut2 precedes the expansion of β-cell mass in the pregnant mouse
A compensatory increase in β-cell mass occurs during pregnancy to counter the associated insulin resistance, and a failure in adaptation is thought to contribute to gestational diabetes. Insulin-expressing but glucose-transporter-2-low (Ins+Glut2LO) progenitor cells are present in mouse and human pancreas, being predominantly located in extra-islet β-cell clusters, and contribute to the regener...
متن کاملMiRNAs in β-Cell Development, Identity, and Disease
Pancreatic β-cells regulate glucose metabolism by secreting insulin, which in turn stimulates the utilization or storage of the sugar by peripheral tissues. Insulin insufficiency and a prolonged period of insulin resistance are usually the core components of type 2 diabetes (T2D). Although, decreased insulin levels in T2D have long been attributed to a decrease in β-cell function and/or mass, t...
متن کاملRole of MicroRNAs in Islet Beta-Cell Compensation and Failure during Diabetes
Pancreatic beta-cell function and mass are markedly adaptive to compensate for the changes in insulin requirement observed during several situations such as pregnancy, obesity, glucocorticoids excess, or administration. This requires a beta-cell compensation which is achieved through a gain of beta-cell mass and function. Elucidating the physiological mechanisms that promote functional beta-cel...
متن کاملInsulin-Resistance-Associated Compensatory Mechanisms of Pancreatic Beta Cells: A Current Opinion
insulin-resistance, β-cells compensate for this hormonal resistance for long periods of time by an increase in secretory capacity and in β-cell mass. In animal models of insulin-resistance there is islet hyperplasia (1–3) and very recently a clear correlation between BMI and β-cells mass was shown in humans (4). The driving forces that can contribute to the increased β-cell mass in insulin-resi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 122 10 شماره
صفحات -
تاریخ انتشار 2012